Empty

Total: 0,00 €

h:D

Planet hack-day

  • Sunday, April 13, 2014 - 10:01
    The Ultimate Workstation That Folds Up

    ultimate maker station

    Looking for an easy way to keep on making stuff even though you’re living in a tiny dorm room? [Matt Silver] was tired of not having a dedicated work-space, so he spent some serious time designing this modular, re-configurable and collapsible portable workstation ready for almost anything.

    He started out by sketching ideas, playing around with 3D models in SketchUp, and eventually building a few prototypes using trial and error — and what he’s come up with is pretty darn impressive. It folds down to just under a foot by three feet squared and has casters to roll it around. Once unfolded, you stabilize it by placing your chair on one of the walls that folds down, and the desk itself is also re-configurable for different work surfaces. He’s included a power bar, an LED work-light, and it even has storage racks for tools on the side.

    It’s a very thorough Instructable, and definitely worth a look through — especially to see how it magically unfolds! And if you’re wondering about how much it would cost to build, you’re probably looking at around $200 depending on what you already have on hand. What we really like is how it’s almost entirely made out of a single 4′x8′ panel of plywood — it’s like this guy works for IKEA or something!

    Filed under: home hacks, tool hacks

  • Sunday, April 13, 2014 - 07:01
    Sewing Conductive Thread in Parallel Lines

    sewing-parallel-lines-conductive-thread

    [Cynthia] has shared a great video of  machine sewing parallel lines of conductive thread onto ribbon using a cording foot which usually comes standard with most machines. This technique could be particularly useful when using addressable LEDs like a NeoPixel to get the ground, data, and positive lined up fairly accurately. Sewing the conductive thread onto ribbon also makes it a hell of a lot easier to attach to many garments or textiles,  and also makes it easier to replace or reuse.

    The method is pretty easy, essentially using the grooves in the cording foot to guide the conductive treads and ensuring even spacing. Two of the lines are sewn down approximately 3 mm apart using a zigzag stitch. The third line is sewn separately making sure the stitching doesn’t break the first two lines. In the video, a striped ribbon is used which has slight troughs that additionally helps the threads stay in place and the sewer to stay on target.

    [Cynthia] of Cynthia Designs Studio has been experimenting with embedding electronics in textiles and has quite a few great videos that you can check out on the Cynthia Designs Studio YouTube channel.

    We have seen a machine embroidered LED matrix and a hand sewn LED quilt here on Hackaday, but those who have tried know that conductive thread can be very tricky to work with and keep conductivity.  Do you have any tips or tricks for hand or machine sewing conductive thread? If so, please share in the comments below.

    Filed under: wearable hacks

  • Sunday, April 13, 2014 - 04:00
    Turn Your Drill Press into a Bobbin/Spindle Sander

    drill press ander

    Drill presses are a staple tool of the typical garage — they aren’t too expensive and are indispensably useful — but have you ever thought of turning it into a spindle sander?

    You can buy drum sander kits fairly cheap, but the problem is they’re really difficult to use and really messy too — you’ll have sawdust everywhere in no time. What [Carl's] done here is created a wood box for his drill press with different size holes for each drum sander bit. By attaching a vacuum cleaner to the box, you can clean up your mess while you’re still doing the work.

    Just a note — drill presses aren’t designed to take radial loads like a mill is. If you’re planning on doing some really heavy sanding, adding a bolt through the entire drum sander bit and then coupling it with a fixed bearing inside of your box might be a good idea.

    It’s a pretty simple hack, but could save you an additional power tool, and space on your work bench! Have a drill but no drill press? No problem.

     

    Filed under: tool hacks

  • Sunday, April 13, 2014 - 01:00
    A Virtual Cane for the Visually Impaired

    cane

    [Roman] has created an electronic cane for the visually impaired. Blind and visually impaired people have used canes and walking sticks for centuries. However, it wasn’t until the 1920′s and 1930′s that the white cane came to be synonymous with the blind. [Roman] is attempting to improve on the white cane design by bringing modern electronics to the table. With a mixture of hardware and clever software running on an Android smartphone, [Roman] has created a device that could help a blind person navigate.

    The white cane has been replaced with a virtual cane, consisting of a 3D printed black cylinder. The cane is controlled by an ATmega328 running the Arduino bootloader and [Roman's] code. Peeking out from the end of the handle is a Maxbotix ultrasonic distance sensor. Distance information is reported to the user via a piezo buzzer and a vibration motor. An induction coil allows for charging without fumbling for tiny connectors. A Bluetooth module connects the virtual cane to the other half of the system, an Android phone.

    [Roman's] Android app runs solely on voice prompts and speech syntheses. Navigation commands such as “Take me to <address>” use the phone’s GPS and Google Maps API to retrieve route information. [Roman's] app then speaks the directions for the user to follow. Help can be summoned by simply stating “Send <contact name> my current location.” In the event that the user drops their virtual cane, “Find my device” will send a Bluetooth command to the cane. Once the command is received, the cane will reveal its position by beeping and vibrating.

    We’ve said it before, and we’ll say it again. Using technology to help disabled people is one of the best hacks we can think of. Hackaday alum [Caleb Kraft] has been doing just that with his work at The Controller Project. [Roman] is still actively improving his cane. He’s already won a gold medal at the Niagara Regional Science and Engineering Fair. He’s entered his project in several more science events, including the Canada Wide Science Fair and the Google Science Fair. Good luck [Roman]!

    Filed under: lifehacks, misc hacks

  • Saturday, April 12, 2014 - 22:01
    Developed on Hackaday: The Top PCB dilemna

    The Hackaday community offline password keeper is slowly coming together. A few days ago we received the top PCB for Olivier’s design (shown above). If you look at the picture below, you may see the problem we discovered when opening our package: the soldermask was the wrong color! Given the board is meant to be placed behind a tinted acrylic panel, this was quite a problem…

    After using some spray paint, we managed to get to the point shown in the bottom left of the picture. The next task was to find the best way to illuminate the input interface with reverse mount LEDs. Using a CNC mill we machined openings (top right PCB) but also removed some epoxy on both PCB’s sides, thinking it would provide a better light diffusion. We then wrote part of the Mooltipass PWM code and took these pictures:

    Using the FR4 to diffuse the light

    Cut through openings

    We hope you agree that the ‘FR4 version’ looks better. The other version, which has the cut openings, illuminates unevenly because the smartcard isn’t under all of the LEDs. This raises several questions that we hope our dear Hackaday readers can answer:

    1. Can this kind of machining be done in standard PCB fabs?
    2. Instead of leaving the bare FR4 on top, should we cover it with white soldermask?
    3. Instead of leaving the bare FR4 on top, should we cover it with white silkscreen?

    Keep in mind that we would only need to machine one PCB’s side.

    Another concern is the top panel. As previously mentioned we’re currently using a tinted acrylic panel, which may not be the best solution to prevent scratches. We’re thinking to use glass in the future (corning gorilla glass?) so we may also hide everything around the display’s active area. Do you guys have any experience with this? Would it be expensive in relatively small quantities?

    As you can see, we still need to find the best compromises and we hope you can help us. Please post a quick message in the comment section below or contact the team in the official Mooltipass Google Group.

     

    Filed under: Featured, Hackaday Columns, hardware

  • Saturday, April 12, 2014 - 19:00
    DIY Linear Actuators For A Flight Sim

    linear

    [Roland] has already built a few very cool and extremely realistic flight sims, but his latest project will put his current rig to shame. He’s building a six degree of freedom simulator based on homebuilt linear actuators of his own design.

    The actuator is powered by a large DC motor moving timing belts along the length of the enclosure. These timing belts are connected to a shaft that’s coupled to the frame with a few bungee cords. The bungee cords are important; without them, the timing belts would be carrying all the load of the sim – not a good thing if these actuators are moving an entire cockpit around a living room.

    Also on [Roland]‘s list of awesome stuff he’s building for his flight sims is a vibration system based on the BFF Shaker. This board takes data in from sim software and turns it into vibrations produced by either unbalanced DC motors or one of those ‘bass kicker’ transducers.

    It’s all very cool stuff, and with all the crazy upgrades [Roland] is doing to his sim rig, he’s doing much better than paying $300/hour to rent a Beechcraft Baron.

     

    Filed under: hardware, robots hacks

  • Saturday, April 12, 2014 - 16:23
    Transcribing Piano Rolls with Python

    Piano Roll

     

    Perforated rolls of paper, called piano rolls, are used to input songs into player pianos. The image above was taken from a YouTube video showing a player piano playing a Gershwin tune called Limehouse Nights. There’s no published sheet music for the song, so [Zulko] decided to use Python to transcribe it.

    First off the video was downloaded from YouTube. This video was processed with MoviePy library to create a single image plotting the notes. Using a Fourier Transform, the horizontal spacing between notes was found. This allowed the image to be reduced so that one pixel corresponded with one key.

    With that done, each column could be assigned to a specific note on the piano. That takes care of the pitches, but the note duration requires more processing. The Fourier Transform is applied again to determine the length of a quarter note. With this known, the notes can be quantized, and a note duration can be applied to each.

    Once the duration and notes are known, it’s time to export sheet music. LilyPond, an open source language for music notation, was used. This converts ASCII text into a sheet music PDF. The final result is a playable score of the piece, which you can watch after the break.

    Filed under: musical hacks, software hacks

  • Saturday, April 12, 2014 - 13:00
    This Is Not Your Father’s Power Wheel

    powerwheels-mainIf you had a Power Wheel vehicle as a kid you may have been the envy of the neighborhood. Even as fun as they were you probably out grew them. Lucky for a few youngsters, [Bob] hasn’t. Not only does he have several Power Wheels for his children to use, he does some pretty cool mods to make them even more fun.

    Changing the stock motor out for a cordless drill is one of the first things that gets done. A few brands have been used but the  Ryobi 18v Cordless Drill is the favorite. The entire drill is used, including the reduction gearbox. The gearbox is switched to LOW gearing so that the drill has enough torque to move the combined weight of the vehicle and child. As much as it may sound odd to use a drill in this manner, the Power Wheel can get up to about 15 mph. A stock Power Wheels maxes out at 5 mph

    The stock Power Wheel ‘gas’ pedal is a simple on/off switch and may have one or two speeds. It’s replaced by the variable speed trigger switch from the drill giving the tiny driver full control of the speed. In most cases the batteries that came with the drill are responsible for supplying the necessary electrical power.

    Plastic wheels aren’t going to cut the traction mustard. These are upgraded to rubber tires and metal wheels like the ones you would find on a rider lawn mower. Not only are the rubber tires much quieter than the originals but they give superior traction that can handle rain, snow and steep hills.

    So how do all these mods hold up over time? [Bob] says some of his modded Power Wheels are still working after 2 years of regular use. There are several different conversions on his site so head over and check them out.

     

    Filed under: toy hacks

  • Saturday, April 12, 2014 - 10:00
    Play Peek-A-Boo with Blind Spot

    blindspot

    You’re at a concert, and a car filled with balloons is in a glass box. As you approach the box, vertical blinds close to block the view directly in front of you. You move left, more blinds close to block your view. The blinds follow your every move, ensuring you can’t get a close up view of the car inside. You’ve just met Blind Spot, an interactive art installation by [Brendan Matkin].

    Blind Spot was presented at Breakerhead, an incredible arts and engineering event which takes place every September in Calgary, Canada. Blind Spot consists of a car inside a large wooden box. Windows allow a view into the box, though there are 96 vertical blinds just behind the glass. The vertical blinds are individually controlled by hobby servos. The servos are wired to six serial servo controllers, all of which are controlled by an Arduino.

    A PC serves as Blind Spot’s brain. For sensors, 6 wide-angle webcams connect to a standard Windows 7 machine. Running 6 webcams is not exactly a standard configuration. To handle this,  [Brendan] switched the webcams to friendly names in the windows registry. The webcam images are read by a Processing sketch. The sketch scans the images and determines which of the 96 blinds to close. The code for Blind Spot is available on github.

    Filed under: misc hacks

  • Saturday, April 12, 2014 - 07:00
    ISPnub – A Stand-Alone AVR In-System-Programmer Module

    [Thomas] tipped us about his latest project: a stand-alone AVR programmer module named ISPnub. As you can see in the picture above, it is a simple circuit board composed of a main microcontroller (ATmega1284p), one button and two LEDs. Programming a target is a simple as connecting the ISPnub and pressing the button. The flashing operation success status is then shown using the green/red LED.

    ISPnub gets its power from the target circuit so no external power supply is needed. It works over a wide voltage range: 1.8V to 5.5V. The module also features a programming counter which can be used to limit the number of programming cycles. A multi-platform Java tool is in charge of embedding the target flash contents with the ISPnub main firmware. The complete project is open source so you may want to check out the official GitHub repository for the firmware and the project’s page for the schematics.

    Filed under: hardware

  • Saturday, April 12, 2014 - 04:00
    Using Bitcoin To Detect Malware

    vigil

    Now that you can actually buy things with bitcoins, it’s become a playground for modern malware authors. [Eric] recently lost about 5 BTC because of some malware he installed and decided to do something about it. He came up with BitcoinVigil, a web service that constantly looks at bitcoin honeypots and alerts you when bitcoins are surreptitiously removed.

    The idea behind BitcoinVigil is to set up a Bitcoin wallet with a small amount of coins in it – only about $10 USD worth. When modern, Bitcoin-seeking malware is run on a computer, it looks for this ‘moneypot’ and sends an email out notifying the owner of the coins to stolen money.

    [Eric] was at a LAN party a few weeks ago and ‘borrowed’ a friend’s copy of Starcraft 1. Just a few seconds after installing it, he received an alert notifying him about a few stolen bitcoins. This time [Eric] only lost a few microBTC, but better than the thousands of USD he lost before.

    Filed under: security hacks

  • Friday, April 11, 2014 - 23:40
    Google Releases Project Ara MDK

    Ara Modules

     

    It’s been a little while since we’ve heard about modular smartphones, but Google has just released the Module Developers Kit (MDK) for Project Ara. The development kit gives an overview of the inner workings of the project, and provides templates for building your own modules.

    Once you’ve agreed to the license agreement and downloaded the MDK, you’ll find a large specification document. It explains how a phone will comprise of many modules loaded into an endoskeleton, giving mechanical support and electrical connections. An interface block provides each module with power and data over LVDS. Modules are held in place by an electro-permanent magnet which can be toggled by software.

    When you’re finished with the specification document, you can dive into the reference designs. These include templates and actual modules for WiFi, thermal imaging, a battery pack, and more. Mechanical CAD is provided as STEP files and drawings, and electrical design files are provided as Altium projects and PDF schematics.

    We discussed both Project Ara and Phonebloks on Hackaday in the past, but now we’re starting to see real details. Google’s Project Ara Developer Conference takes place on April 15th and 16th, and you can register to take part remotely for free. Is this the start of an open, modular phone? Let us know what you think.

    [Thanks to Adam for the tip]

    Filed under: Cellphone Hacks

  • Friday, April 11, 2014 - 22:00
    The Ancient Greeks Invented Kevlar Over 2 Millennia Ago

    linothorax.arrow1

    In 356-323 B.C. Alexander the Great of Macedon conquered almost the entire known world by military force. Surprisingly, not much is known about how he did it! An ancient and mysterious armor called Linothorax was apparently used by Alexander and his men which may have been one of the reasons for his ever so successful conquest. A group of students at the University of Wisconsin Green Bay (UWGB) have been investigating in detail and making their own version of it.

    The problem is this type of armor decomposes naturally over time unlike more solid artifacts of stone and metal — meaning there is no physical proof or evidence of its existence. It has been described in around two dozen pieces of ancient literature and seen in over 700 visuals such as mosaics, sculptures and paintings — but there are no real examples of it. It is made (or thought to be) of many layers of linen glued together, much the same way that Kevlar body armor works.

    The cool thing about this project is the students are designing their own Linothorax using authentic fabrics and glues that would have been available in that time period. The samples have been quite successful, surviving sharp arrows, swords, and even swinging axes at it. If this is the secret to Alexander the Great’s success… no wonder!

    The group has lots of information on the topic and a few videos — stick around to learn more!

    [Thanks Repkid!]

    Filed under: classic hacks, wearable hacks

  • Friday, April 11, 2014 - 19:00
    Reach Out and Touch Your Next Project with Long Range RC Controller

    RC01

    Long range wireless control of a project is always a challenge. [Mike] and his team were looking to extend the range of their current RC setup for a UAV project, and decided on a pair of Arduino mini’s and somewhat expensive Digi Xtend 900Mhz modems to do the trick. With a range of 40 miles, the 1 watt transceivers provide fantastic range. And paired with the all too familiar Arduino, you’ve got yourself an easy long range link.

    [Mike] set the transmitter up so it can plug directly into any RC controller training port, decoding the incoming signal and converting it into a serial data package for transmitting. While they don’t provide the range of other RF transmitters we’ve seen, the 40 mile range of the modem’s are more than enough for most projects, including High Altitude Balloon missions.

    The code for the Arduino transmitter and receiver sides is available at their github. Though there is no built-in error correction in the code, they have not had any issues.  Unfortunately, a schematic was not provided, but you should be able to get enough information from the images and datasheets to construct a working link.

     

    Filed under: Arduino Hacks, drone hacks

  • Friday, April 11, 2014 - 16:01
    Geodesic Structures that aren’t just Domes

    Geodesic structures

    [Brian Korsedal] and his company Arcology Now! have developed a great geodesic building system which makes architectural structures that aren’t just limited to domes. They 3D scan the terrain, generate plans, and make geodesic steel space frame structures which are easy to assemble and can be in any shape imaginable.

    Their clever design software can create any shape and incorporate uneven terrains into the plans. The structures are really easy to construct with basic tools, and assembly is extremely straight forward because the pole labels are generated by the design software. Watch this construction time lapse video.

    At the moment, ordering a structure fabricated by the company is your only option. But it shouldn’t be too hard to fabricate something similar if you have access to a hackerspace. It may even be worth getting in touch with Arcology now! as they do seem happy collaborating to make art like the Amyloid Project, and architectural structures for public spaces and festivals like Lucidity. Find out what they are up to on the Arcology Now! Facebook page.

    Would this be perfect for what you’ve been thinking about building? Let us know what that ‘something’ is in the comments below.

    Filed under: home hacks

  • Friday, April 11, 2014 - 13:00
    BeagleBone Black and FPGA Driven LED Wall

    LED Wall

     

    This is 6,144 RGB LEDs being controlled by a BeagleBone Black and a FPGA. This gives the display 12 bit color and a refresh rate of 200 Hz. [Glen]‘s 6 panel LED wall uses the BeagleBone Black to generate the image, and the LogiBone FPGA board for high speed IO.

    [Glen] started off with a single 32 x 32 RGB LED panel, and wrote a detailed tutorial on how that build works. The LED panels used for this project have built in drivers, but they cannot do PWM. To control color, the entire panel must be updated at high speed.

    The BeagleBone’s IO isn’t fast enough for this, so a Xilinx Spartan 6 LX9 FPGA takes care of the high speed signaling. The image is loaded into the FPGA’s Block RAM by the BeagleBone, and the FPGA takes care of the rest. The LogiBone maps the FPGA’s address space into the CPU’s address space, which allows for high speed transfers.

    If you want to drive this many LEDs, you’ll need to look beyond the Arduino. [Glen]‘s work provides a great starting point, and all of the source is available on Github.

    [Thanks to Jonathan for the tip]

    Filed under: led hacks

  • Friday, April 11, 2014 - 10:00
    A Brilliant and Elegant CNC Pendant

    pendant

    [Mike Douglas] has a small hobby CNC router, which works great — but you’re limited to controlling it from your PC. And unfortunately, there just aren’t pendants made for this consumer level stuff. Annoyed at having to reach over to use his keyboard all the time, he stumbled upon a simple, but brilliant solution: A dedicated USB 10-key pendant keypad.

    These USB keypads are designed for laptops that don’t have full size keyboards. They can be had for a few dollars from China, and let you expand your keyboard possibilities… All [Mike] had to do was print off some stickers to put on the keys!

    It’s easy to program new hot keys in Mach3  – and there you go! Why haven’t we thought of this before? While you’re at it, why not build a cyclonic dust separator for your CNC too — and if you’re having trouble clamping down work pieces, [Mike] has a pretty cool solution for that as well.

     

     

    Filed under: cnc hacks

  • Friday, April 11, 2014 - 07:01
    The INFRA-NINJA — A PC Remote Receiver

    F3GULGEHTOUJI73.MEDIUM

    Laziness sometimes spawns the greatest inventions. Making things to reduce effort on your part is quite possibly one of the greatest motivators out there. So when [Kyle] had to get out of bed in order to turn off Netflix on his computer… He decided to do something about it.

    He already had an Apple remote, which we have to admit, is a nice, simple and elegant control stick — so he decided  to interface with it in order to control his non-Apple computer. He quickly made up a simple PCB up using the good ‘ol toner transfer method, and then populated it with a Bareduino, a CP2102 USB 2.0 to TTL UART 6PIN Serial Converter, an IR receiver, a USB jack, header pins, and a few LED and tactile switches.

    It’s a bit tricky to upload the code (you have to remove the jumper block) but then it’s just a matter of connecting to it and transferring it over with the Arduino IDE. The Instructable is a bit short, but [Kyle] promises if you’re really interested he’ll help out with any questions you might have!

    Filed under: computer hacks, macs hacks

  • Friday, April 11, 2014 - 04:01
    Never Lose Your Pencil With OSkAR on Patrol

    OSkAR

    [Courtney] has been hard at work on OSkAR, an OpenCV based speaking robot. OSkAR is [Courney's] capstone project (pdf link) at Shepherd University in West Virginia, USA. The goal is for OSkAR to be an assistive robot. OSkAR will navigate a typical home environment, reporting objects it finds through speech synthesis software.

    To accomplish this, [Courtney]  started with a Beagle Bone Black and a Logitech C920 webcam. The robot’s body was built using LEGO Mindstorms NXT parts. This means that when not operating autonomously, OSkAR can be controlled via Bluetooth from an Android phone. On the software side, [Courtney] began with the stock Angstrom Linux distribution for the BBB. After running into video problems, she switched her desktop environment to Xfce.  OpenCV provides the machine vision system. [Courtney] created models for several objects for OSkAR to recognize.

    Right now, OSkAR’s life consists of wandering around the room looking for pencils and door frames. When a pencil or door is found, OSkAR announces the object, and whether it is to his left or his right. It may sound like a rather boring life for a robot, but the semester isn’t over yet. [Courtney] is still hard at work creating more object models, which will expand OSkAR’s interests into new areas.

    [Thanks Emad!]

    Filed under: robots hacks

  • Friday, April 11, 2014 - 01:01
    3D Printed Cyclone Dust Separator

    DSCN7011

    [Nicholas] has been reading Hackaday for a few months now, and after seeing several people’s dust extractor setups, he decided to make his own 3D printed version. And he’s sharing the files with everyone!

    He has a small Lobo mill which produces a lot of dust and to clean up he’s been using a small “Shark” brand vacuum cleaner. It’s a powerful little thing, but has little to no capacity which makes it rather frustrating to use. This makes it a perfect candidate for a cyclone upgrade! If you’re not familiar with cyclonic separator it’s a way of removing dust from air using vortex separation — between rotational forces and gravity, this keeps the dust out of your vacuum cleaner and means you never need to change another filter!

    Using Autodesk inventor he designed this 4-stage cyclone separator. It’s made for a 1.75″ OD vacuum hose (the Shark standard) but could be easily modified for different vacuums. We’ve seen lots of cyclone separators before, but this 3D printed one certainly makes it easier to fabricate to exacting standards!

    Filed under: 3d Printer hacks, tool hacks

Pages