Empty

Total: 0,00 €

h:D

Planet

  • Monday, April 14, 2014 - 06:00
    Schlieren flow visualization: What does sound look like?



    Laughing Squid posted this awesome video from NPR that explains what sound looks like.

    NPR’s Skunk Bear, which is the name of their science Tumblr run by Adam Cole, explains what sound looks like using Schlieren flow visualization, a technique that chiefly uses a set of parabolic mirrors, to show air distortion. Given that sound distorts the air, it can be imaged this way. The Schlieren images for this video were provided by Mike Hargather.

    Read more.

  • Monday, April 14, 2014 - 04:00
    Electron Beam Control In A Scanning Electron Microscope

    Electron

    A few years ago [Ben Krasnow] built a scanning electron microscope from a few parts he had sitting around. He’s done a few overviews of how he built his SEM, but now he’s put up a great video on how to control electrons, focus them into a point, and scan a sample.

    The basic idea behind a scanning electron microscope is to shoot electrons down a tube, focus them into a point, and scan a conductive sample and detect the secondary electrons shot off the sample and display them on an oscilloscope. [Ben] is generating electrons with a small tungsten filament at the top of his electron ‘stack’. Being like charged, these electrons naturally fan out, so a good bit of electron optics are required to get a small point.

    Focusing is done through a series of pinholes and electrostatic deflectors, much like you’d see in an old oscilloscope CRT. In the video, you can see [Ben] shooting electrons and displaying a Christmas tree graphic  onto a piece of phosphor-coated glass. He has a pretty big scanning area in his SEM, more than enough to look at a few chips, wafers, and whatever other crazy stuff is coming out of [Ben]‘s lab.

    Video below, along with the three-year-old overview of the entire microscope.

    Filed under: misc hacks

  • Monday, April 14, 2014 - 01:01
    Hackaday Links: April 13, 2014

    hackaday-links-chain

    Check out this Pokemon Yellow cartridge for Super Nintendo. Wait, what? That is a Game Boy game! Well there is a Super Gameboy cartridge that lets you play them on SNES. This mashes the guts of the two into a custom-decorated SNES cart. Now if you’re more interested in the guts of that Super Game Boy cartridge you’ll want to check out this classic hack which dumped the ROM from it. [Thanks Nick]

    Here are a couple of interesting things from our friends over at Adafruit. First off, they have a high-res gallery of the Raspberry Pi compute module and carrier boards which we heard about earlier in the week. Also, the latest Collin’s Lab has a great video on soldering. We especially appreciated the discussion of soldering iron tips and their effect on heat transfer.

    [Marius] got tired of the static shock from the office coat rack. You know, like the scene straight out of Office Space? But he didn’t disassemble the infrastructure to solve the issue. Instead he connected it directly to ground. Just make sure you stick the wire in the correct hole!

    It’s as if Hackaday is on a quest for the most perfect DIY cyclonic separator. Here’s the latest offering which you can cut out from sheet stock by hand. It’s the alternative for those of us without access to a 3D printer.

    If you think it’s too difficult to build what we refer to as a Daft Punk table you need to check out what [Dan] pulled off. He proves that your LED matrix coffee table project doesn’t have to take up a ton of time or cost an exorbitant amount of cash.

    We should have mentioned this to you before the weekend so you’d have something to watch: you can now download BBS: The Documentary from the Internet Archive. We’ve watched the entire thing and it’s fantastic. If you know what a dial-up modem handshake sounds like, you’re going to be awash in nostalgia. If you don’t know the delight of those sounds you need to watch this and see how things used to be back in the day when connecting your computer to a network definitely wasn’t what the cool kids were doing. [Thanks Larry]

    Filed under: Hackaday Columns, Hackaday links

  • Sunday, April 13, 2014 - 22:00
    Super Affordable LED Lighting Ready to Go Off Mains Voltage

    lights

    If you’re looking for a super cheap way to add LED lighting accents to your house, then this hack is for you! Corn-cob style LED light bulbs can be had for a few dollars. The bulbs include driver circuitry, and 8 LED arrays! All you have to do is take it apart.

    [Martin Raynsford] stumbled upon this idea when trying to think of a way to light his laser engraving enclosure. It originally came with a regular light bulb, but it didn’t distribute light nicely and was in the way for some of his other planned upgrades.

    Not wanting to add another DC power supply to the mix he remembered an old corn-cob LED light bulb he had — as it turns out, they’re pretty easy to take apart! Solder some longer leads on (take note of how they are wired, some are in series, some in parallel) and you’ve just made yourself some easy to use LED accent lighting!

    Of course you could just buy those cheap LED rolls from China nowadays for next to nothing for your accent lighting.

    [via Hacked Gadgets]

    Filed under: led hacks

  • Sunday, April 13, 2014 - 19:00
    Hackerspace Tour: IXR in Wall, NJ

    IXR2

    Hackaday took a little trip out to Wall, NJ last weekend for the Vintage Computer Festival 9.1 East. The event was held at Camp Evans, a former US military installation that can only be described as, ‘The DARPA of a century ago”. This is the site of a Marconi transmitter and the place where [Edwin Armstrong] developed the regenerative receiver a little more than 100 years ago.

    There’s a lot more to Camp Evans than a vintage computer festival once a year – it’s also home to MARCH, the Mid-Atlantic Retro Computing Hobbyists, InfoAge, a retro technology museum, and IXR, the Institute for eXploratory Research, a hackerspace located in the old telecom building at Camp Evans.

    In our video tour, [Joe Wilkes] takes us around the shop, showing off their equipment and tools. Unlike most of our hackerspace tours, we couldn’t find a Makerbot sitting disused on a bookshelf anywhere, but the space did have a Solidoodle 3D printer, a Shapeoko 2 CNC machine under construction, and enough hand tools to bring any project to fruition.

    There were a few oddities in IXR compared to the other hackerspaces we’ve been to. First is an inordinate amount of synths, keyboards, and other MIDI gear. [Joe] didn’t know what these were for, so we’ll leave that explanation for an IXR member in the comments of this post. There was also a small supply of random components for sale (and on display). Most of the merch was from Adafruit, and it seems like a great way to have that one part I need to finish this build for members while providing a little bit of beer money for the space.

    Pics and video below.

    Drill
    Components
    Terminal Strip
    Store
    Shapeoko
    calendar
    Tools
    WTF
    Robot
    Solidoodle
    Drawers
    Musical

    WTF is this

    WTF

    This strange device was found in one of the boxes at IXR, and neither [Joe] nor myself knew what it was. The best guess was a key cutter, but if anyone has a better idea, leave a note in the comments.

    Filed under: Hackerspaces

  • Sunday, April 13, 2014 - 17:00
    3D Printing Maker Tales: FarmBots, Cellos, and Coffee Grinders

    andi ottos celloAmsterdam-based 3D Hubs looks at some interesting uses of 3D printing.

    Read more on MAKE


  • Sunday, April 13, 2014 - 16:29
    “Space Probe: Math” (1983)


    Space Probe Math - Back
    Space Probe Math - Front

    Disney made a Math game spin-off based on the movie “The Black Hole” for the Radio Shack TRS-80 Color Computer This and more @ the TRS-80 Color Computer Software Repository.

    In 1983, Disney put out a computer learning-game spinoff – “Space Probe: Math”. This was a cassette containing two educational games designed for use with the Radio Shack TRS-80 Color Computer.

    The concept of the first game was that the Palomino had landed on an infected planet, Delta 5 Omega. All the crew were falling under “mind diffusion”, basically a viral form of fatigue. The player (aged 7–14) had to solve multiplication or division problems to save the crew. In the second game, the player had to save a primitive world’s crops, using (rectangular) area and perimeter problems – Wikipedia.

  • Sunday, April 13, 2014 - 16:00
    Desktop Sized Tamagotchi Is Even Harder to Ignore

    desktop tamagotchi

    [Vadim] was feeling a bit bored at work one day and dreamed up this rather odd project. He had a spare LED matrix handy, and thought, “I should build a giant Tamagotchi…” and so he did.

    In case you’re not aware, Tamagotchi’s were digital pets introduced in the late 90′s. You had to feed them, play with them and even train them — attempting to teach the responsibility of having a real pet. It was a bit of a fad, and to be honest, they were really quite annoying — but that didn’t stop [Vadim] wanting to make his own!

    He’s using an ATmega328P with the Arduino boot loader at the heart of this project. The LED matrix is made of a group of four 8×8 LED modules with four shift registers (74HC595) and two Darlington transistor arrays to take the current — This is because the 256 LEDs need to be multiplexed down to 32 IO’s (16 rows + 16 columns).

    Once the hardware was all done, he started coding — he’s actually coded the entire game from scratch, and while it’s not that complex it’s still an impressive amount of effort that went into this desktop sized Tamagotchi!

    To see it in action, stick around after the break.

    To learn more about hacking a Tamagotchi, there’s an excellent talk about how to reverse engineer it that we covered a few years ago.

    Filed under: Arduino Hacks

  • Sunday, April 13, 2014 - 15:59
    Pop up repair services #makerbusiness


    Pop-Up-Repair-Collage-Copy
    Can a Pop-Up Service Fix It? Probably @ NYTimes.com.

    Give the Pop Up Repair wizards your poor, your tired, your broken possessions yearning to light up, switch on and make coffee again. This itinerant repair shop run by an ad hoc group of theater professionals and tinkerers is equal parts practical service and philosophical resistance to the “cycle of use-and-discard,” as the sandwich sign in front of its Greenmarket table proclaims.

    Read more.

  • Sunday, April 13, 2014 - 13:01
    Printing In Three Dimensions, For Real This Time

    topo

    3D printers don’t continuously print in three dimensions – they print one layer, then another, then another. This is true for every single 3D printing technology, but now Topolabs has a very interesting technique that changes that. They’re printing in three dimensions by moving in the Z axis while also printing in the X and Y axes.

    The basic idea behind Topolabs’ software is to print a support block, then print an object right on top of the support. The support block can be curved and convex, and the finished product follows the contours of the solid support block. Unlike ‘printing with supports’, the printer extrudes along the X, Y, and Z axes, which should make the finished product much, much stronger.

    There are a few drawbacks to the technique – a release agent must be applied to the top of the support block. In the video below, Topolabs is using Kapton, but hair spray or glue sticks will also work. There’s also a limit to how steep an incline a printer can print, determined by the size of the extruder nozzle. Lastly, this technique would be much better suited for a delta-style bot, but the team is getting very good results with a normal Cartesian bot.

    You can see a few videos of the Topolabs printing technique below.

    Filed under: 3d Printer hacks

  • Sunday, April 13, 2014 - 10:01
    The Ultimate Workstation That Folds Up

    ultimate maker station

    Looking for an easy way to keep on making stuff even though you’re living in a tiny dorm room? [Matt Silver] was tired of not having a dedicated work-space, so he spent some serious time designing this modular, re-configurable and collapsible portable workstation ready for almost anything.

    He started out by sketching ideas, playing around with 3D models in SketchUp, and eventually building a few prototypes using trial and error — and what he’s come up with is pretty darn impressive. It folds down to just under a foot by three feet squared and has casters to roll it around. Once unfolded, you stabilize it by placing your chair on one of the walls that folds down, and the desk itself is also re-configurable for different work surfaces. He’s included a power bar, an LED work-light, and it even has storage racks for tools on the side.

    It’s a very thorough Instructable, and definitely worth a look through — especially to see how it magically unfolds! And if you’re wondering about how much it would cost to build, you’re probably looking at around $200 depending on what you already have on hand. What we really like is how it’s almost entirely made out of a single 4′x8′ panel of plywood — it’s like this guy works for IKEA or something!

    Filed under: home hacks, tool hacks

  • Sunday, April 13, 2014 - 09:00
    A Mathematical Proof That The Universe Could Have Formed Spontaneously From Nothing


    NewImage

    Cosmologists now have a mathematical proof that natural quantum fluctuations allowed the Big Bang to happen. via medium:

    But that still leaves a huge puzzle. What caused the Big Bang itself? For many years, cosmologists have relied on the idea that the universe formed spontaneously, that the Big Bang was the result of quantum fluctuations in which the Universe came into existence from nothing.

    That’s plausible, given what we know about quantum mechanics. But physicists really need more — a mathematical proof to give the idea flesh.

    Today they get their wish thanks to the work of Dongshan He and buddies at the Wuhan Institute of Physics and Mathematics in China. These guys have come up with the first rigorous proof that the Big Bang could indeed have occurred spontaneously because of quantum fluctuations.

    The new proof is based on a special set of solutions to a mathematical entity known as the Wheeler-DeWitt equation. In the first half of the 20th century, cosmologists struggled to combine the two pillars of modern physics— quantum mechanics and general relativity—in a way that reasonably described the universe. As far as they could tell, these theories were entirely at odds with each other.

    Read more.

  • Sunday, April 13, 2014 - 08:00
    NASA’s flying saucer to land payloads on other planets


    NewImage

    NASA built a flying saucer, which they’ve called the Low-Density Supersonic Decelerator, that will eventually land large payloads on other planets. via Extreme Tech:

    No, humble inhabitants of Hawaii, the US government hasn’t increased the level of psychoactive drugs in your water supply: That really is a flying saucer that just flew past your window at three times the speed of sound. Dubbed the Low-Density Supersonic Decelerator, NASA is hoping that this flying saucer is the secret to eventually landing larger payloads on other planets — such as sending a human exploration party to Mars, along with plenty of supplies. The LDSD is on a pretty aggressive schedule, with seven major tech demos over the next 24 months, and could be used in a real mission to Mars in 2018.

    Later this year, NASA’s Jet Propulsion Laboratory will use a balloon to launch a test vehicle up to an altitude of 120,000 feet (36.5 kilometers) above Hawaii. The test vehicle will then use a rocket to reach supersonic speeds and raise its altitude yet further to 180,000 feet (54.8 kilometers)… and then it will cut its engine and begin to free fall back to earth. As the capsule passes Mach 3.5 (2,600 mph), the LDSD will kick into action, sprouting a Supersonic Inflatable Aerodynamic Decelerator (SIAD) from the craft and filling it with pressurized air. With the SIAD fully inflated, the spacecraft looks awfully like a flying saucer. The SIAD slows the craft down to around Mach 2, whereupon a massive 30-meter-diameter parachute will then be used to bring speeds down to subsonic landing speeds.

    Read more.

  • Sunday, April 13, 2014 - 07:01
    Sewing Conductive Thread in Parallel Lines

    sewing-parallel-lines-conductive-thread

    [Cynthia] has shared a great video of  machine sewing parallel lines of conductive thread onto ribbon using a cording foot which usually comes standard with most machines. This technique could be particularly useful when using addressable LEDs like a NeoPixel to get the ground, data, and positive lined up fairly accurately. Sewing the conductive thread onto ribbon also makes it a hell of a lot easier to attach to many garments or textiles,  and also makes it easier to replace or reuse.

    The method is pretty easy, essentially using the grooves in the cording foot to guide the conductive treads and ensuring even spacing. Two of the lines are sewn down approximately 3 mm apart using a zigzag stitch. The third line is sewn separately making sure the stitching doesn’t break the first two lines. In the video, a striped ribbon is used which has slight troughs that additionally helps the threads stay in place and the sewer to stay on target.

    [Cynthia] of Cynthia Designs Studio has been experimenting with embedding electronics in textiles and has quite a few great videos that you can check out on the Cynthia Designs Studio YouTube channel.

    We have seen a machine embroidered LED matrix and a hand sewn LED quilt here on Hackaday, but those who have tried know that conductive thread can be very tricky to work with and keep conductivity.  Do you have any tips or tricks for hand or machine sewing conductive thread? If so, please share in the comments below.

    Filed under: wearable hacks

  • Sunday, April 13, 2014 - 07:00
    Yale Researchers Reconstruct Images of Faces Using fMRI Scans


    main-faces

    Led by a Yale University undergraduate, researchers have used fMRI scans to accurately reconstruct the images of faces as seen by the people being scanned. The level of sophistication in fMRI technology has previously allowed researchers to decipher the subject of what a viewer was looking at, such as whether it was scenery versus an animal. But the task of deciphering subtle differences in faces demonstrates a new level of mastery since faces exhibit many more similarities to each other than say, ponies and beach scenes. We also incorporate large areas of our brains to observe all these subtleties, which left much larger areas of the brain to be carefully monitored and greater amounts of brain activity to be decoded. From YaleNews:

    Working with funding from the Yale Provost’s office, Cowen and post doctoral researcher Brice Kuhl, now an assistant professor at New York University, showed six subjects 300 different “training” faces while undergoing fMRI scans. They used the data to create a sort of statistical library of how those brains responded to individual faces. They then showed the six subjects new sets of faces while they were undergoing scans. Taking that fMRI data alone, researchers used their statistical library to reconstruct the faces their subjects were viewing.

    Cowen said the accuracy of these facial reconstructions will increase with time and he envisions they can be used as a research tool, for instance in studying how autistic children respond to faces.

    Read more.

  • Sunday, April 13, 2014 - 06:00
    MIT Creates “Living Material” by Fusing Living Cells with Electronics


    Jean-Luc-Picard-Locutus

    Don’t worry, it’s not quite the Borg, but researchers at MIT have managed to combine biology with electronics to produce cells capable of conductivity and light emission. From Dvice:

    MIT researchers, led by doctoral candidate Allen Chen, have fused the living and non-living worlds by creating E. coli strands capable of incorporating gold nanoparticles and quantum dots into their colonies. These “living materials” will benefit from both the conductivity and light-emitting properties of their non-living parts and the responsiveness of their bacterial hearts.

    The concept is based on naturally-occurring living materials like bone, which incorporates both minerals and living cells. While glowing, conductive bacteria is pretty interesting on its own, the research team believes that its new living circuitry could someday be used in everything from solar cells and diagnostic sensors to self-healing electronics.

    Read more.

    livingmaterials

  • Sunday, April 13, 2014 - 06:00
    Circuit board art


    Room
    Toilet

    Circuit board art sent in by a reader.

  • Sunday, April 13, 2014 - 04:00
    Turn Your Drill Press into a Bobbin/Spindle Sander

    drill press ander

    Drill presses are a staple tool of the typical garage — they aren’t too expensive and are indispensably useful — but have you ever thought of turning it into a spindle sander?

    You can buy drum sander kits fairly cheap, but the problem is they’re really difficult to use and really messy too — you’ll have sawdust everywhere in no time. What [Carl's] done here is created a wood box for his drill press with different size holes for each drum sander bit. By attaching a vacuum cleaner to the box, you can clean up your mess while you’re still doing the work.

    Just a note — drill presses aren’t designed to take radial loads like a mill is. If you’re planning on doing some really heavy sanding, adding a bolt through the entire drum sander bit and then coupling it with a fixed bearing inside of your box might be a good idea.

    It’s a pretty simple hack, but could save you an additional power tool, and space on your work bench! Have a drill but no drill press? No problem.

     

    Filed under: tool hacks

  • Sunday, April 13, 2014 - 03:30
    Maker-Friendly Hardware Stores

    20140122_111441When faced with a tough technical challenge, you can always depend on a neighborhood hardware store.

    Read more on MAKE


  • Sunday, April 13, 2014 - 01:00
    A Virtual Cane for the Visually Impaired

    cane

    [Roman] has created an electronic cane for the visually impaired. Blind and visually impaired people have used canes and walking sticks for centuries. However, it wasn’t until the 1920′s and 1930′s that the white cane came to be synonymous with the blind. [Roman] is attempting to improve on the white cane design by bringing modern electronics to the table. With a mixture of hardware and clever software running on an Android smartphone, [Roman] has created a device that could help a blind person navigate.

    The white cane has been replaced with a virtual cane, consisting of a 3D printed black cylinder. The cane is controlled by an ATmega328 running the Arduino bootloader and [Roman's] code. Peeking out from the end of the handle is a Maxbotix ultrasonic distance sensor. Distance information is reported to the user via a piezo buzzer and a vibration motor. An induction coil allows for charging without fumbling for tiny connectors. A Bluetooth module connects the virtual cane to the other half of the system, an Android phone.

    [Roman's] Android app runs solely on voice prompts and speech syntheses. Navigation commands such as “Take me to <address>” use the phone’s GPS and Google Maps API to retrieve route information. [Roman's] app then speaks the directions for the user to follow. Help can be summoned by simply stating “Send <contact name> my current location.” In the event that the user drops their virtual cane, “Find my device” will send a Bluetooth command to the cane. Once the command is received, the cane will reveal its position by beeping and vibrating.

    We’ve said it before, and we’ll say it again. Using technology to help disabled people is one of the best hacks we can think of. Hackaday alum [Caleb Kraft] has been doing just that with his work at The Controller Project. [Roman] is still actively improving his cane. He’s already won a gold medal at the Niagara Regional Science and Engineering Fair. He’s entered his project in several more science events, including the Canada Wide Science Fair and the Google Science Fair. Good luck [Roman]!

    Filed under: lifehacks, misc hacks

Pages